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On the Evaluation of the Incomplete Gamma 
Function 

By Roy Takenaga 

0. Abstract. The accurate evaluation of the x2 distribution for high degrees of 
freedom by the usual methods is very difficult (even with a digital computer) be- 
cause the series to be evaluated would become unbearably long. Also, when a series 
becomes long, more precision in the numbers used is required in order to offset the 
effects of round-off errors. On a computer this would mean the use of multiple pre- 
cision. Accurate tables can be, and have been, prepared by use of the Cornish-Fisher 
approximation. Comparison of the table values with the values obtained by the 
method in the writer's paper show that these tables have an accuracy of about six 
significant figures. For practical purposes there seems to be no lack of x2 tables for 
high degrees of freedom. The method in the writer's paper is still useful in checking 
on the accuracy of tables computed by approximate methods or in producing tables 
with more significant figures. With single precision it can produce tables of seven 
figure accuracy at a speed far better than could be by the usual accurate methods. 
Some unique and useful tables can be produced using this method. 

1. Introduction. The incomplete gamma function is defined by K. Pearson [2, 
p. v] to be 

( 1 ) r,(P + 1) = ftOet dt, -1 < p,0 y. 

This paper presents a method of evaluating the ratio 

(2) Fp(y) = r,(p + 1)/r(p + 1), -1 < p, 0 < ye 

for cases in which p is greater than about 15. For the lower values of p there are a 
number of integration methods. Among them is the formula [2, p. xv] 

-Y p+i 2 

_e ~y ___ 

(3) = (p+ 2)1 +p+ 2 (p+ 2)(p +3) 

(p + 2)(p + 3) .. (p + k) + 
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When p is large there are a number of difficulties in using this formula. For the 
usually desired values of y, such that 0.005 _ F,(y) < 0.995, e-8 becomes ex- 
tremely small and y"' becomes extremely large even if y is restricted to be less 
than p (there is a similar formula for large values of y). Of course, r(p + 1) be- 
comes large, too, but the biggest difficulty is in obtaining the desired accuracies 
from the series, which tends to get long, causing serious round-off errors. On the 
IBM 7090 computer, 30 seems to be the top permissible value of p. After that 
value the forementioned troubles become serious. 

Method E', on p. xviii of [2], describes a method of evaluating (2) when p is 
high, called "the expansion in normal moment functions". Its utility was limited to 
extremely high values of p. Even for p = 100, it integrated Fp'(y) for only a small 
distance around the point y = p. Now in 1931 Wilson and Hilferty [3] showed, in 
effect, that for large p the random variable represented by the cube root of y had a 
distribution much closer to normality, as measured by the first four moments, 
than the distribution of y. This paper develops method E' for the distribution re- 
sulting from taking the cube root of y. The result has been programmed on the 
IBM 7094. It was found that this method will maintain six significant-figure ac- 
curacy for values of y such that 0.005 < F,(y) < 0.995, even for p as low as 14. 
For higher accuracies the range must be cut down for the lower p's. Formula (3) 
and corresponding formulae for the other tail may be used to take over the tails. 

2. Transformation of the Integrand. Starting with 

(4) Fp'(y) = e-8 

let 

(5) 8 = (x + a) 

where a and b are constants to be determined later (note that y is monotonic in- 
creasing if a > 0 and b > 0). With x as the new variable, the corresponding inte- 
grand (derived density function) is 

(6) f(X) = b- + exp[_( b). +1. 

Taking the log of expression (6), 

(7) logf(x) = log - + (3p + 2) log (x - a) (X a)3(p + 1), 

and using the Stirling asymptotic expansion for log r(p + 1), this becomes 

logf(X) = log 
3 

+ (3p + 2) log a + (3p + 2) log ( + - 

(8) - (b) [1 + 3 +3( ) + ()] 

(P + 2) log p + P - log 27r- + 
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Assuming I x/a I to be less than one, 

9I log (1 + x) = - x +3(x _ ()+ 

Now we assume that a and b satisfy the equations 

(10) (3p + 2) = 3(a/b)3 

and 

(11) 1(3p + 2) + 3(a/b)3 = a2/2. 

Solving for a and b, 

(12) a = 3(p + 2)112 

and 

(13) b = 3(p + 3)1/6 

Then, letting log C represent the constant terms other than - log 27r, 

log C = log 3 + 3(p + 2) log a-(P + log P - () + P 

(14) 
- 

1 + 1 1 + +- ~ -p3 1260p5+ l2p 360p3 16p 

_ 1 1 1 2 891 

36p 81p2 360p3 1215 p4 306180p5 

and 

(15) log = log 2r 2 + 
a + 1 + 

or, limiting the series to the seventh power of 1/a, 

9aL32 4an 10 6a600 al 420 aI 

+ 16 
7 (j) + 3 (4) + 

9 1 + exp ( x2/2) 

In calculating series (16), the absence of the cubic term as well as the linear term 
in (15) is appreciated. For calculating percentiles in the range of from 0.005 to 
0.995, fxf is approximately 2.7 at most, while for p > 16, one can see from (12) 
that a is approximately 12 at least. Some significant figures may be gained in the 
transformation (5). When p = 100, a a30, 5 that two significant figures are 
gained when x is near zero and one is gained when x = 3. 
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3. Integration. In integrating (16), note that 
x x 

(17) Ak = f t2k+l .exp (-t2/2) * dt = 2k f (t2/2)k.exp (-t2/2).d(t2/2) 

and 
x x 

(18) Bk = f t *kexp (-t2/2) *dt = 2k-112f (t2/2 )k-1/2exp ( t2/2). d(t2/2). 

The left members of (17) and (18) are called "incomplete normal moment func- 
tions" by K. Pearson [2, p. xix], and are tabulated in Table IX of [1], up to 2k = 10. 
The Ak's and the Bk's may be evaluated through series (3) or its alternatives. 

In terms of the Ak's and the Bk's 

I(x) = f f(x).dx = (C/(2r)112){[Bo -12 B2- 4B3 

i/ii\12a 1 1 
+ 1 1 - 

B4 + 37 
B5 - 1 
B B6 

5400a6 10368a6 
(19) 

L15a3 2 +21a5 9a5 1 20- a) A4 

29 + 1 
A 

3780a 4320a7 Aj) 

Note that Bo/(27r)'12 corresponds to the normal distribution. It is by far the major 
contributor to the value of I(x). For convenience exp (-x2/2), which is a factor 
of every Ak and Bk, may be factored out. Also, it may be useful to note the follow- 
ing relationships: 

(20) 2(k + 1)Ak' = X2k?2 + Alk + 

and 

(21) (2k + 1)Bk' = X2k+1 + Bk1, 

where the primes indicate that exp (-x2/2) has been factored out. 
In integration a constant must be evaluated, and this presents a problem. 

Note that x is actually measured from the mode of (6), corresponding to the point 
y = p + 3 in (4). The integral desired starts from y = 0 (or y = oc ). The deriva- 
tions to this point have been essentially analytic. In order to complete the integra- 
tion in this spirit, formula (3) may be used for the left tail area. For any given p, 
the point which separates the domains of the two integrals varies according to the 
accuracy desired; also, the point varies with the p. For p = 100, x = -2.5 may 
be a good point, but for p = 1000, x = -3 or -4 may be a better point. If p is 
high enough, x may be minus six, in which case there is probably no need for the 

F,(yo) term. But this leaves the problem of evaluating the Ak's and Bk's to the 
desired accuracy when I x I is as large as six. This may be accomplished by including 
a table within the program. Formula (3) converges within a reasonable number 
of terms if y/p is sufficiently small. The factor that precedes the series may be 
evaluated from (15), taking a sufficient number of terms. Then, having selected xo 
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and the corresponding value yo, 

(22) Fp(y) = Fp(yo) -I (xo) + I (x) 

is the final integral. 
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Doppler Broadening Integrals* 

By Van E. Wood, R. P. Kenan and M. L. Glasser 

Asymptotic expansions in terms of Chebyshev polynomials of the integrals 

In (xX v) = v1/2 yn(1 + y2)-1 exp [-v(y - x)2] dy, n = 0, 1 ... 

have recently been given by Thompson [1]. In this note, we wish to point out that 
these integrals can be expressed in terms of tabulated (and readily calculable) 
functions for any values of the parameters, a fact which is not mentioned in the 
literature we have seen on this subject. Specifically, we find 

Io(X, v) 7rv=/2 Re [exp [v(I + ix)2] erfc (v112(1 + ix))], 

11 (x, v) =V' /2 Im [exp [v(1 + ix)2] erfc (v112(1 + ix))]. 

These results may be obtained by introducing the representation (1 + y2)-V= 

fO e- cos yz dz, or by solving the coupled differential equations dlo/dx - 
2v(1I - xlo), dl1/dx = 2v(7r - Io- xI), or by simply making appropriate 
changes of variable in some tabulated integrals [2]. Now a method for calculating 
error functions of complex argument using a rapidly converging infinite series has 
been described by Salzer [3]; hence the integrals can be obtained easily without 
using the asymptotic expansion. 

By introducing the well-known asymptotic expansion for the co-error function, 
one may obtain in a very simple way the asymptotic expansions in Chebyshev 
polynomials 

10 7r~ 1f2 E (2m -1)!!(-2v)m(1 + X2)'-12T2m+i((1 + X2) 112), 
00 

I 1/2 (2m- 1)!!(+2v)m(1 + X2)-m-2T2m(X/(1 + x2)1/2). 
m=0 

where 
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